Corrosion Protection of Reinforcing Steel in Concrete

Matt Miltenberger, P.E.

Vector Corrosion Technologies, Inc.

Cost of Corrosion

- Corrosion is the single most important cause of damage to concrete structures
- NACE estimates the cost of corrosion damage to concrete structures (in the USA) is approximately

\$ 125 Billion per year!!!

Environmental Factors - Carbonation

- Reduction of pH in cover concrete that causes loss of passive oxide layer
- Increased rate with increased w/cm
- Low pH caused by reaction of free lime (Ca(OH)₂) in concrete with atmospheric Carbon Dioxide (CO₂)

 $\begin{array}{c} \text{Ce}(\text{CO}_2) \\ \text{Ca}(\text{OH})_2 + \text{CO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CaCO}_3 + \text{H}_2\text{O} \\ \text{lime (soluble)} \\ \text{pH 12-13} \end{array}$

Requirements for Rebar Corrosion

- 1. Anode (location where metal is lost)
- pH < 11 and/or chloride ion initiate corrosion
- 2. Cathode (steel surface)
- Oxygen and water are consumed
- 3. Electrical connection (steel)
 - Electron transfer from anode to cathode
- **4. Electrolytic connection** (moist concrete)
- Ionic transfer from cathode to anode

Anodic Ring (Halo Effect)

- Anodic ring phenomena are associated with a repair area that is surrounded by "new" corrosion sites.
- Anodic ring phenomena are one of the primary reasons for short-lived repairs.

Corrosion Mitigation Options

- Address Cause for Corrosion Activity
- Remove Contaminated Concrete
- -Partial or full-depth repairs
- Dry the concrete
- Localized protection along interface
- Cathodic protection of entire element
- Electrochemical treatments

Corrosion Management Strategies Levels of Corrosion Protection Corrosion Preventing new corrosion Prevention activity from initiating Corrosion Significantly reducing Control on-going corrosion activity Cathodic Highest level of protection intended **Protection** to stop on-going corrosion activity Stopping active corrosion by Corrosion changing the environment around **Passivation** the steel

What is the purpose of the mortar shell around the anode?

- Mortar is specially formulated to keep the zinc active over time.
 - $pH \approx 14$
- Mortar accepts corrosion by-products from the zinc core.

Cathodic Protection Systems Work by applying sufficient current to reinforcing steel to overcome the corrosion process Galvanic Systems: Sacrificial metal corrodes to provide protective current Impressed Current Systems: D.C. power supply provides current (rectifier or battery)

Corrosion Passivation

Modify the chemistry of the concrete to create a passive environment around the reinforcing steel.

Electrochemical Treatments

- Proven long term performance
- Measurable criteria:
 - ECE: Chloride content before and after
 700 to 1500 A*hr/m² (SHRP)
 - Realk: pH before and after (phenolphthalein) 100 to 250 A*hr/m²

Electrochemical Chloride Extraction SHRP Research

- Extensive ECE Testing Undertaken (SHRP)
- Confirmed ECE's Ability to:
- Halt Corrosion
- Restore Passive Oxide Film on Rebar
- No Adverse Chemical or Mechanical Effects

ECE Deemed one of the Most Valuable Technologies Evaluated

Long Term Data Shows Rebar Still Passive

Realkalization

- Draws highly alkaline electrolyte to the reinforcing steel to restore lost alkalinity to carbonated concrete
- Alkalinity around reinforcing steel is maintained over time, will not re-carbonate
- Lower cost, less disruptive than mechanical removal and replacement of carbonated concrete

Summary		
Level of Protection	Description	Typical Solution
Corrosion Prevention	Preventing new corrosion activity from initiating	Discrete Galvanic Anodes
Corrosion Control	Significantly reducing active corrosion	Discrete Galvanic Anodes
Cathodic Protection	Stopping active corrosion by applying on-going electrical current	Distributed Galvanic Anodes or Impressed Current Cathodic Protection (ICCP)
Corrosion Passivation	Stopping active corrosion by changing the concrete environment around the steel	Electrochemical Treatments (ECE or Realkalization)